DFA的两种方法
作者: 来源: 文字大小:[大][中][小]
在现实经济生活,尤其是瞬息万变的金融市场中直接进行实验,或者是不可能的,或者是得不偿失的,而根据实际问题建立模型,并利用模型进行试验,比较不同后果,选择可行方案,不失为有效的代用方法。目前,有两种模型方法在“动态财务分析模型”中运用广泛,即“情景分析”和“随机模拟”。在情景分析方法中,许多可能出现的“特殊的情景”被预先选取出来,然后再进一步分析在上述情景下,企业财务状况的后果如何。而随机模拟方法则基于随机数理模型,并以此反映诸如利率、证券价值、生存率、或损失频率和损失程度等因素的不确定性。随机模拟方法会根据动态财务分析模型中关键变量的分布状况,随机取值并用以计算出许多可能的结果,然后对整个结果的分布状态进行分析。该方法最有价值的运用领域也许是用来确定企业年金不可接受的经营或财务结果(例如,期末盈余小于零)的概率值,如果该比值太大,就需要对当前的经营或财务状况进行调整,以回复到正常水平。
使用传统的趋势外推、增长曲线等定量定时的预测方法,来在不确定性条件下进行经济预测,存在一定的局限性,不能适应处于当今瞬息万变世界中的人们预测未来之需要。这主要表现在:
第一,如果原始数据可信度不高,那么,由这些传统预测模型得出的预测结果便不可靠;
第二,这些传统预测方法无法综合归纳和反馈人们对未来发展的群体意图和愿望,不能体现人们驾驭未来的能动作用;
第三,这些传统方法是在系统环境不变的前提下,根据过去和现在推断未来,所以,一旦系统环境发生变化,这些方法就失去了应用前提,在这种条件下得到的预测结果便宣告失效;
第四,这些传统的预测技术无法解释处于不确定环境中的企业长期发展的多种可能性。
以特尔菲法为代表的概率预测技术,尽管克服了传统的定量预测和定时预测方法的一些缺点,但是,它作为一种获取专家知识的有效手段,侧重于获取专家较为一致的经验判断,对技术发展前景的复杂性、多样性、不确定性、突变性和跳跃性等特征体现得不够充分。那么,在不确定条件下,面对公司未来经营和财务规划发展的多种可能,如何避免用传统预测技术盲目地推断一个单一的“最可能”未来,而去设计一个体现未来发展多样化的符合逻辑的多变量系统,并由此导出一系列多维的预测结果呢?情景分析法就是可以满足这些要求的重要的经济预测方法之一。
1.情景分析法
在长期的发展过程中,产生了一些具体的便于操作的情景分析法,例如:目标展开法、空隙填补法、未来分析法等等,尽管这些方法各有特色,但它们的主要操作过程大致相同,可以归纳为以下四个步骤:第一,明确预测问题,作好必要准备。根据现实需要和项目要求进行信息调研,调研范围不仅包括公司自身经营和财务因素,还应包括社会、政治、经济、生态等相关因素。第二,确定影响水平和变量。在系统分析基础上,依靠专家智慧,将影响公司未来经营发展的主要因素划分为几大类影响水平。然后在各水平下,确定影响较大的子因素或者说变量。在水平及变量的确定过程中,要在水平间、变量间进行交互影响分析,消除重叠因素和次要因素。除了定性分析,目前已有很多定量分析方法可以用来选择关键因素。例如:间接影响分析法、模糊集合法、结构解释模型法、结盟与冲突分析法等。第三,情景构造。情景构造是情景分析的中心内容。构造情景时,应充分发挥专家的逻辑思维能力和形象思维能力,从当前时刻出发,根据各水平下变量的可能变化情况,沿其路径向未来延伸。在延伸过程中,要保证各因素的影响作用有理有据,一个因素或事件为什么比另一个的影响大,影响作用是什么?必须能够说得明白,而且最好能用量化指标说明,为了避免情景系统过于庞大、复杂,小概率事件一般不考虑。第四,编写预测报告。这一阶段主要是对前面工作进行系统整理和总结,以及对以前工作存在的个别纰漏进行补救。
所谓模拟是指用电子计算机对真实经济系统在一定环境下各要素的相互作用,进行有条件的模仿试验,并求得数值解的一种数量分析方法。正如前面所说,在现实经济生活中直接进行实验,或者是不可能的,或者是得不偿失的,而根据实际问题建立模型,并利用模型进行试验,比较不同后果,选择可行方案,不失为有效的代用方法。同时,由于经济数学模型日益增大和复杂化,并且要更多地考虑非经济的影响,已不能用数学运算达到准确的分析解,而需要通过电子计算机模拟,用数值运算达到数字解。综合这两方面可以看出,模拟已使间接实验成为可能,也为模型求解提供了新的方法。随机模拟不同于求解确定性的、静态的线性问题的数学解析法,能比较真实地描述和近似地求解复杂系统的问题。随机模拟又不同于专门研究系统运行状况的,常用的有很大局限性的真实的实验法,它能在真实系统建立前进行可能办到的、经济方便的有限实验。进行随机模拟的基本步骤包括确定问题、收集资料、制定模型、建立模型的计算程序、鉴定和证实模型,设计模型试验、进行模拟操作和分析模拟结果。这里说的模型必须是“模拟模型”,一般来说,“随机模型”比确定性模型、“动态模型”比静态模型、“非线性模型”比线性模型更多地使用模拟方法来分析和求解,而成为模拟模型。随机模拟模型比较灵活,它通常并不用来求最优解,但却可以回答“如果在某个时期采取某种行动,对后续时期将会产生什么后果”等一类的问题。
国内著名信息经济学者乌家培教授认为,随机模拟的作用表现在:能对高度复杂的内部交互作用的系统进行研究和实验能设想各种不同方案,观察这些方案对系统的结构和行为的影响;能反映变量间的相互关系,说明哪些变量更重要,如何影响其他变量和整个系统能研究不同时期相互间的动态联系,反映系统行为随时间变化而变化的情况;能检验模型的假设,改进模型的结构。他同时也认为,随机模拟的局限性表现在:随机模拟运用范围只限于能考察的情况,一旦出现不能模拟的特殊情况时,就会发生困难;它的规模很大时,较难取得资料相模拟细节成本高、费时间、工作复杂。北美地区的精算师对前面所说的“情景分析”方法应当是十分熟悉的,即便在70年代金融市场利率震荡以前,他们就已经开始使用此种模型方法了。例如,在美国社会保险体系中,情景分析的方法就已经被用来预测三种情景下社会体系的财务状况。对精算师而言,“情景分析”方法的优势之一是,只要实际结果落于预测区间内,精算师便回避了因为不准确的点估计而要受到的批评。但是,对政策制定者而言,这样的情景测试方法的帮助是有限的,因为它无法提供各种结果出现的可能性。尽管未来的不确定性也得到了某种程度的反映,但预测结果的区间是如此广泛,使得基于此数据的决策意义不大。而随机模拟提供的信息,理论上要优于情景分析。比如,在使用情景分析方法来评估保险公司偿付能力水平时,测试结果仅体现在某特定或某系列事件发生的情形下,保险企业是否生存。而随机模拟方法却能就事件后果的整个区间内提供有用的信息,所以,目前在北美地区流行的动态财务分析模型,通常是以随机模拟模型为基础的。