为了提高电子设备的
电磁兼容能力,必须从开始设计时就给予电磁兼容性以足够的重视。电磁兼容的设计思路可以从电磁兼容的三要素,即电磁干扰源、电磁干扰可能传播的路径及易接收电磁干扰的电磁敏感电路和器件入手。也就是
[1] 首先,要充分分析电子设备可能存在的电磁干扰源及其性质,尽量消除或降低电磁干扰源的参数。
[2] 其次,要充分了解电磁干扰可能传播的路径,尽量切断其路径,或降低与电磁干扰耦合的能力。
[3] 最后,要充分认识易接收电磁干扰的电磁敏感电路和器件,尽量杜绝其接收电磁干扰的可能性。
据此,在设计时应采取相应对策,消除或部分消除可能出现的电磁干扰,以减轻调试工作的压力。在调试中,针对具体出现的电磁干扰,以及接收电磁干扰的电路和元器件的表现进行分析,以确定电磁干扰源所在及电磁干扰可能传播的路径,再采取相应的解决办法。
[5.1] 对电磁干扰源的设计方法
电磁干扰源的种类相当多,比如,自然的电磁干扰源包括:地球表面的最大磁场强度为52A/m,平均电场强度为130v/m,雷电的大气干扰,静电的电晕放电和宇宙噪声等等。人为的电磁干扰源包括:含有整流子的直流电机换向时火花的电弧和电流变化,电器开关动作时产生的电弧和电流变化,非线性元器件工作时产生的谐波,高频振荡器和无线电发送设备的电磁辐射,汽车点火系统,医疗用的超声波发生器,生活用的微波炉以及电磁脉冲等等。可以说电磁干扰源无处不在,下面仅谈论与我们相关的主要电磁干扰源。
[5.1.1]供电电源
供电电源,常由于负载的通断过渡过程,半导体元件的非线性,脉冲设备及雷电的耦合等因素,而成为电磁干扰源。
供电电源电磁兼容的设计方法为:
[1]采用交流电源滤波器
由于交流电源滤波器是低通滤波器,不妨碍工频电能的通过,而对高频电磁干扰呈高阻状态,有较强的抑制能力。使用交流电源滤波器时,应根据其两端阻抗和要求的插入衰减系数选择滤波器的型式。要注意其承受电压和导通电流的能力,屏蔽与机壳要电气接触良好,地线要尽量短,截面足够大,进出线要远离,而且滤波器应尽量靠近供电电源。
[2]采用电源变压器加静电屏蔽
由于电源变压器初、次级间存在分布电容,进入电源变压器初级的高频干扰能通过分布电容耦合到电源变压器的次级。在电源变压器的初次级间增加静电屏蔽后,该屏蔽与绕组间形成新的分布电容。将屏蔽接地,可以将高频干扰通过这一新的分布电容引入地,从而起到抗电磁干扰的作用。静电屏蔽应选择导电性好的材料,且首尾端不可闭合,以免造成短路。
[3]脉冲电压的吸收
对脉冲电压的电磁干扰可以采用压敏电阻、固体放电管或瞬态电压抑制二极管来吸收。当脉冲电压吸收器件承受一个高能量的瞬态电压脉冲时,其工作阻抗能立即降到很低,允许通过很大的电流,吸收很大的功率,从而将电压钳制在允许的范围内。
压敏电阻或固态放电管可应用于直流或交流电路。单向瞬态电压抑制二极管应用于直流电路,而双向瞬态电压抑制二极管应用于交流电路。使用脉冲电压吸收器件时,应选择其额定电压略高于设备的最大工作电压,以保证无脉冲电压时,吸收器件的功耗最小,当有脉冲电压时,其钳位的电压应低于设备的最高绝缘电压,以保证设备的安全。其通流能力应大于脉冲电压所产生的电流。
[4]直流电源的电磁兼容措施
——整流电路的高频滤波 即在整流管上并联小电容(0.01uF)进一步滤掉从变压器进入的高频干扰。
——直流退耦 即在直流电源和地之间并联2个电容,大电容(10uF—100uF)滤掉低频干扰,小电容(0.01—0.22uF)滤掉高频干扰。
[5]电源的其它电磁兼容措施
——控制电路和功率电路采用分相供电或采用不同的电源供电。
——采用UPS(不间断电源)供电。
——采用电源电压监视集成电路
[5.1.2]暂态过程
暂态过程是由于电路机械触点的分合,负载的通断和电路的快速切换导致电路电压或电流发生快速变化,而成为电磁干扰源。
暂态过程的电磁兼容设计方法为
[1]电路机械触点的熄火花电路
电路机械触点的熄火花电路由电阻(R)和电容(C)串联组成。其原理是用电容转换触点分断时负载电感(L)上的能量,从而避免在触点上产生过电压和电弧造成的电磁干扰,最终有电阻吸收这部分能量。
电路参数计算如下:
R>2(L/C)1/2 (Ω) (1)
C1=4L/R2 (uF) (2)
C2=(Im/300)2L (uF) (3)
式中:R为电阻(Ω);
L为负载电感(uH);
Im为负载电感中的最大电流(A);
C取C1、C2、中最大者。
[2]电感负载的续流电路和吸收电路
直流电路电感负载的续流电路是用二极管反并联在电感负载上。当切断电感负载时,其上的电流经二极管续流,不会产生过电压而危及电路上的其它器件。
参数选择如下:
IF>2IN (4)
VRRM>2VN (5)
式中:IF为二极管正向平均电流;
VRRM二极管反向重复峰值电压;
IN为电感负载的额定电流;
VN为电感负载的额定电压。
如果用压敏电阻代替二极管,其效果会更好。因为压敏电阻吸收能量快,从而减小了动作响应时间。另外,压敏电阻还可以应用在交流电路电感负载的场合。应用压敏电阻时应注意以下几点:
——压敏电阻的标称电压;
——压敏电阻的压比;
——压敏电阻的吸收能量的能力;
——压敏电阻的前沿响应时间;
——压敏电阻应当尽量紧靠电感使用;
[3]电容负载的限流电路
电容负载的限流电路由电阻(R)和开关并联组成。其原理是用电阻限制电容负载开始投入时的短路电流,从而避免短路电流造成的电磁干扰。经过时间(t)将开关闭合,切除限流电阻。
参数选择如下:
R>2VN/I (6)
t >3RC (7)
式中:IN为负载的额定电流。
VN为电源的额定电压。
C为负载的电容。
[4]电路快速切换的电磁兼容措施
电路快速切换(包括晶闸管换流、直流斩波、二极管关断时的电荷存储效应等)将导致电压或电流的快速变化,而成为电磁干扰源。
对此可采用如下电磁兼容措施
——串联缓冲电感,以降低电流变化率。
——用电感电容谐振电路代替直流斩波,以降低电流变化率或电压变化率。
[5.1.3]电磁辐射
电磁辐射包括电子设备内部和外部两种电磁辐射源。其实任一电流的周围都存在磁场,而变化的磁场会产生变化的电场,这种电磁场就是电磁干扰源。
电子设备中主要的电磁辐射源是大电流,高电压的强功率电路和器件,电压或电流快速变化的电路和器件以及高频电路和器件。
对电磁辐射的电磁兼容设计是,采用电磁屏蔽方法,即用屏蔽材料将电磁辐射源封闭起来,使其外部电磁场强低于允许值。
电磁屏蔽的技术原理主要有两种:
是一反射,由于空气和金属屏蔽的电磁阻抗不同,使入射电磁电波产生反射作用。磁场中的反射损耗R(dB),对磁场源而言
R=20log10{[0.012(μτ/fδτ)1/2/D]+5.364D(fδτ/μτ)1/2+0.354} (8)
式中:μτ为相对磁导率
δτ为相对电导率
f为电磁波频率
D为辐射源到屏蔽体的距离(m)
对电场而言
R=322+10log10(δτ/μτf3D2) (9)
二是吸收,进入金属屏蔽内的电磁波在金属屏蔽内传播时,由于衰减而产生吸收作用。吸收损耗A(dB)为:
A=0.131d(μτfδτ)1/2 (10)
式中:d为屏蔽材料厚度(mm)。
[1] 磁场屏蔽 一般采用磁导率高的材料作屏蔽体,它给低频磁通提供一个闭合回路,并使其限制在屏蔽体内。屏蔽体的磁导率越高,厚度越大,磁阻越小,磁场屏蔽的效果越好。当然屏蔽的设计要与设备的重量相协调。在杂散耦合可能引起有害作用的电路中,应选用带有屏蔽的电感器和继电器,并将屏蔽有效地接地。
[2] 磁场屏蔽 一般采用电导率高的材料作屏蔽体,并将屏蔽体接地。使电力线在此终止,因而电场不会泄漏到屏蔽体外部。电场屏蔽以反射为主,因此屏蔽体的厚度不宜过大,而以结构强度为主要考虑因素。
应当特别注意电磁屏蔽的完整性,特别是电磁场屏蔽,因为它是利用屏蔽体在高频磁场的作用下产生反方向的涡流磁场与原磁场抵消而消除高频磁场干扰的。如果屏蔽体不完整,则涡流的效果降低,导致电磁场泄漏,屏蔽效果将大打折扣。
[5.1.4]雷电
雷电是带电云对地或带电云之间的放电现象。带电云对地放电为直接雷击,而非直接雷击时设备所受到的干扰为感应雷击。由于雷电具有非常大的能量和非常短的持续时间,因此雷电是非常强的干扰源。
雷电的电磁兼容设计方法是
[1] 对直接雷击采用的设计方法 采用闪接器、避雷引线和避雷接地组成的避雷系统。将直接雷击的能量引入大地,以保护电子设备。
[2] 对感应雷击采用的设计方法 采用气体避雷管、压敏电阻、电压瞬变吸收二极管或固体放电管。利用其非线性特性,对感应雷击的高电压尖峰削波和能量吸收,以保护电子设备。
[5.1.5]静电
当不同介质的材料相互摩擦时,会产生电荷转移而产生静电。当然静电也可能以其它方式产生,比如受到其它带电体的感应。静电场强的高低取决于材料所携带的电荷量多少和对地电容的大小。当这种材料对电子设备的场强超过绝缘介质的击穿强度时,会发生电晕放电或火花放电,形成静电干扰,可能导致电力设备损坏。
防静电的电磁兼容设计方法是
——防止静电的产生,例如阻止静电荷的积累、泄放积累的电荷,采用防静电地板和静电消除器等等。
——采用静电屏蔽和接地措施,将静电产生的电荷引走。
——采用静电保护措施,例如增加串联电阻以降低静电放电电流,增加并联元件以把静电放电电流引走,对静电作用下易损坏器件的操作防护和软件的静电防护等等。
[5.1.6]无线电发射源
无线电发射机的频率范围为103—1012Hz。
无线电发射机的有效辐射功率(ERB)很高。例如军用雷达10GW,气象雷达1GW,船用雷达100MW,电视广播50MW,商用电台300kW,广播电台100kW,业余通讯1kW,车用通讯100W。
因此无线电发射源对电子设备是一很强的干扰源。
对无线电发射源的电磁兼容的设计方法是
——严格控制无线电发射的方位角,以减小无线电发射源干扰的空间范围。
——采用完整的电磁屏蔽和可靠的接地措施,以减小无线电发射源的泄漏干扰。
[5.3] 对易接收电磁干扰的电磁敏感电路和器件的设计方法
[5.2.1] 电路性耦合
当两个电路存在公共阻抗时,一个电路的电参数通过公共阻抗对另一个电路的电参数产生影响。而这种影响造成误动作时,即为通过电路性耦合的路径产生的电磁干扰。公共阻抗主要有回路导线、共地阻抗和共电源内阻。
电路性耦合的电磁兼容设计方法是
[1]. 对共电源内阻产生的电磁干扰,可以用不同的电源分别供电的方法,以去除共电源内阻产生的电路性耦合。
[2]. 对共回路导线产生的电磁干扰,可以用对导线阻抗加以限制或去耦的方法,以减低共回路导线产生的电路性耦合。共回路导线的阻抗包括电阻和电感。
——限制电阻的方法 增大共回路导线的截面,减少共回路导线的长度和降低接触电阻。
——限制电感的方法 减小共回路导线的长度和来回线的距离。
——电路去耦的方法 去掉共回路导线,而将不同的回路仅在一点接地。
[3]. 对共地阻抗产生的电磁干扰,可以用降低共地阻抗的方法,以去除共地阻抗产生的电路性耦合。
——接地的种类和作用
电子设备一般有两种接地,一种是安全接地,即将机壳接地。当机壳带电时,电源的保护动作,切断电源,以保护工作人员的安全。另一种是工作接地,给电路系统提供一个基准电位,同时也可将高频干扰引走,但是,不正确的工作接地反而会增加干扰,比如共地线干扰,地环路干扰等等。
工作接地按工作频率采用不同的接地方式。工作频率低的(小于1MHz)采用单点接地式,即把整个电路系统中的一个结构点点看作接地参考点,所有对地连接都接到这一点上,并设置一个安全接地螺栓。工作频率高的(大于30MHz)采用多点接地式,即在该电路系统里,用一块接地平板代替电路中每部分各自的地回路。其主要原因是接地引线的感抗与频率和长度成正比,工作频率高时将增加共地阻抗,从而将增大共地阻抗产生的电磁干扰。工作频率在上述两者之间的可采用混合接地方式。
此外,还有一种浮接地式,即该电路的地与大地无导体连接。其优点是该电路不受大地电性能的影响。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。
——对接地电阻的要求
接地电阻越小越好。因为当有电流流过接地电阻时,其上产生的电压,将产生共地阻抗的电磁干扰。另外,该电压不仅使设备受到反击过电压的影响,而且使操作人员受到电击伤害的威胁。因此,一般要求接地电阻小于4Ω。
接地电阻由接地线电阻、接触电阻和地电阻组成。为此降低接地电阻的方法有以下三种:
一是降低接地线电阻,为此要用总截面动和长度小的多股细导线。
二是降低接触电阻,为此要将接地线与接地螺栓和接地极作紧密又可靠地连接,并要增加接地极和土壤之间的面积与接地紧密度。
三是降低地电阻,为此遥控增加接地极的表面积和增加土壤的电导率(如在土壤中注入盐水)。
——低频电路地
工作频率低于1MHz的一个电路采用单点接地式,以防两点接地产生共地阻抗的电路性耦合。多个电路的单点接地式又分为串联和并联两种,由于串联接地产生共地阻抗的电路性耦合,所以低频电路最好采用并联的单点接地式。
为防止工频和其它杂散电流在信号地线上产生干扰,信号地线应与功率地线和机壳地线绝缘。且只在功率地,机壳地和接往大地的接地线的安全接地螺栓上相连(浮地式除外)。
地线的长度(L/m)与截面积(S/mm2)的关系为:
S>0.83L (11)
——高频电路地
工作频率高于30MHz的电路采用多点接地式。因为接地引线感抗与频率和长度成正比,所以地线的长度要尽量短。多点接地时,尽量最接近的低阻值接地面接地。
——混合接地式
工作频率介于1—30MHz的电路采用混合接地式。当接地线的长度小于工作信号波长的1/20时,采用单点接点式,否则采用多点接地式。
——屏蔽地
电路的屏蔽体,即用屏蔽材料将电磁辐射源屏蔽起来,并将屏蔽体接地,以降低电磁辐射的干扰。屏蔽体内的电路电地线只能一点接屏蔽体,而不得利用屏蔽体作返回导体。
——电缆的屏蔽层
对于多层屏蔽电缆,每个屏蔽层应在一点接地,各屏蔽层应相互绝缘。
当电缆长度大于工作信号波长的0.15倍时,采用间隔工作信号波长的0.15倍的多点接地式。如果不能实现,则至少应将屏蔽层两端接地。
[4]. 电位隔离
电位隔离分机械、电磁、光电和浮地几种隔离方式,其实质是人为地造成电的隔离,以阻止电路性耦合产生的电磁干扰。
——技术隔离采用继电器来实现
其线圈接收信号,机械触点发送信号。机械触点分断时,由于阻抗很大,电容很小,从而阻止了电路性耦合产生的电磁干扰。缺点是线圈工作频率低,不适合于工作频率高的场合使用。而且存在触点通断的弹跳和干扰以及接触电阻等。
——电磁隔离采用变压器来实现
通过变压器传递电信号,阻止了电路性耦合产生的电磁干扰。对于交流电的场合使用较为方便,由于变压器绕组间分布电容较大,所以使用时应当与屏蔽和接地相配合。
——光电隔离采用光电耦合器来实现
通过半导体发光二极管(LED)的光发射和光敏半导体(光敏电阻、光敏二极管、光敏三极管、光敏晶闸管等)的光接收来实现信号的传递。光电耦合器的输入阻抗相对比较小,因此分压在光电耦合器输入端的干扰电压较小,而且一般干扰源的内阻较大,它能提供的电流并不大,因此不能使发光二极管发光。光电耦合的外壳是密封的,它不受外部光的影响。光电耦合器的隔离电阻很大(约为1012Ω),隔离电容很小(约为数pF)能阻止电路性耦合产生的电磁干扰。只是光电耦合器的隔离阻抗随着频率的提高而降低,抗干扰效果也将降低。
——浮地
浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。
[5.2.2] 电容性耦合
任何两个导体之间都存在着电容。电容值与介质的介电常数ε和两个导体的有效面积成正比、与两个导体之间的距离D成反比。当两个平行圆导体直径为d时,其电容C为
C=πε/ln(D/d)
当一个导体对地具有电位U1,阻抗Z1,另一个导体对地具有阻抗Z2,两个导体具有相同的地电位,通过两个导体之间的电容,在另一个导体上将产生干扰电压U2为
U2=U1Z2/(Z1+Z2+1/jωC)
当阻抗Z1和阻抗Z2中含有电感分量时,产生的干扰电压U2有可能大于导体1对地的电位U1。
电容性耦合的等值电路图见图1。
在上述分析中,两导线间的有效耦合长度应远小于信号波长(一般为1/10)时,才允许使用集中参数的等效电路来分析线间耦合,否则必须应用电磁场理论的传输方程来分析线间耦合。
电容性耦合的电磁兼容设计方法是
(1).尽可能减小干扰源U1的幅值和干扰源的变化速度ω。
(2).Z1和Z2设计得尽可能大些,且Z1远大于Z2。
(3).耦合电容设计得尽可能小
——尽量加大两个导体间的距离;
——尽量缩短两个导体的长度;
——尽量避免两个导体平行走线;
(4).屏蔽
屏蔽的目的 切断干扰源和被干扰对象之间的电力线,以免除电容性耦合的电磁干扰。
屏蔽的方法 采用与干扰源基准电位相连的屏蔽,采用与被干扰对象基准电位相连的屏蔽,或者上述两者都用,其效果更好。
屏蔽的注意事项
——要有完整的屏蔽,否则屏蔽的效果降低。
——要用导电性能好的材料作屏蔽,否则屏蔽的效果降低。
——要有良好的屏蔽接地,否则屏蔽的效果降低。当导线的长度小于工作信号波长的1/20时,采用单点接地式,否则采用多点接地式。接地的长度要尽可能短。
(5).平衡
平衡的目的 当干扰源和被干扰对象的基准电位是相互独立时,可以采用平衡的方法,致使干扰源和被干扰对象的耦合电容平衡,以免除电容性耦合的电磁干扰。
平衡的方法
——干扰源和被干扰对象均采用绞合导线。
——采用四芯导线,使干扰源和被干扰对象的导线交叉对称。
[5.2.3] 电感性耦合
任何两个回路之间存在着互感。互感值与介质的导磁率μ成正比,并与两个回路的几何尺寸有关。两个回路的布局如图2所示。
图中的1—1为第一回路,2—2为第二回路,a、b、c、d为回路的间距。另外设l为回路的长度。
两个回路的互感M为
M=μlln(ac.bd)/2π (14)
当第一个回路具有电流i1,通过两个回路之间的互感M,在第二个回路产生的干扰电压u2为
u2=Mdi1/dt (15)
电感性耦合的电磁兼容设计方法是
(1).尽可能减小干扰源电流i1的变化速度。
(2).尽可能设计得使两个回路的互感M小,为此。
——尽量加大两个回路间的距离;
——尽量缩短两个回路的长度;
——尽量避免两个回路平行走线;
——尽量缩小两个回路的面积,并减低重合度。
(3).屏蔽
屏蔽的目的 切断干扰源和被干扰对象之间的磁力线,以免除电感性耦合的电磁干扰。
屏蔽的方法 采用铁磁性导体的静态磁屏蔽,采用良导体感应涡流的动态磁屏蔽。
屏蔽的注意事项
——铁磁性导体的静态磁屏蔽适用于低频磁场。屏蔽的效果与屏蔽材料的相对磁导率μ、厚度d、几何形状以及磁场方向有关。例如横向磁场中的园球的屏蔽系数ax为
ax=20log(1+μd/2r) (16)
式中:r为园球的内径
——良导体感应涡流的动态磁屏蔽适用于高频磁场。屏蔽的效果与屏蔽材料的性质,几何形状、屏蔽的密闭程度以及磁场的频率有关。屏蔽系数ad可用式(17)进行近似计算
ad=20log(1+μof/2Zk) (17)
式中:μo为真空导磁率;
f为磁场的频率;
Zk为耦合阻抗;
——网孔状的屏蔽系数与孔的面积占总面积的比例有关。
(4).平衡
平衡的目的 采用平衡的方法,可以减小或免除电感性耦合的电磁干扰。
平衡的方法
——磁场去耦 致使被干扰回路耦合的干扰源磁场最少。例如安排两个回路垂直放置,可达到磁场去耦的目的。
——磁场抵消 因为干扰磁场引起的感应电流在相邻绞线回路的同一根导线上方向相反,相互抵消。为对磁场干扰取得较好的抑制效果,磁场抵消效果越好。
[5.2.3] 辐射性耦合
辐射性耦合是电磁场通过空间耦合到被干扰对象的,如被干扰对象是两根导线,它就是接收天线。天线的等效电路见图3。
等值电源U(即接收的干扰电压)为
U=Eh (18)
式中:E为电场强度
h为天线有效高度。
内阻R为
R=1580(h/λ)2 (19)
式中:λ为电磁场波长
如被干扰对象是一环线,通过环线面积S的磁场将产生干扰电压为
式中:B为磁感应强度。
辐射性耦合的电磁兼容设计方法是
(1).采用空间分离的方法 即把相互容易干扰的设备和导线尽量安排得远一些,并调整电磁场矢量方向,使接收设备耦合的干扰电磁场最低。
(2).采用时间分离方法 即使产生辐射的设备和易接收辐射的设备在不同的时间工作。
(3).采用频率分离方法 即使产生辐射的设备和易接收辐射的设备的工作频率不同。
(4).采用屏蔽的措施 即用屏蔽材料将被干扰对象封闭起来,使其内部电磁场强度低于允许值的一种措施。屏蔽的效果用屏蔽系数来衡量。
(5).减小天线的有效高度。
(6).减小环线面积。
[5.3] 对易接收电磁干扰的电磁敏感电路和器件的设计方法
通常用敏感度来描述敏感设备对电磁干扰响应的程度。敏感度越高,表示对干扰作用响应的可能性越大,即抗电磁干扰的能力越差。因此,一般认为电子设备的敏感度主要取决于它的灵敏度和频带宽度。电子设备主要由模拟电路和数字电路组成。
[5.3.1] 模拟电路
模拟电路的电磁兼容设计方法是
[1]. 优选电路
例如,设计低噪声电路,减少带宽,抑制干扰传输,平衡输入,抑制干扰,选用高质量电源等。
[2]. 采用以下几种信号滤波器
——低通滤波器 当干扰信号的频带高于有用信号的频带比较远时,可采用低通滤波器来滤除干扰信号。
RC低通滤波器的信噪比σL为
σL={1+[SRL/(R+RL )]2}1/2 (21)
式中:S=2лfRC;
f为信号的频率(Hz);
R为滤波器的电阻(Ω);
RL为负载的电阻(Ω);
C为滤波器的电容(F);
——高通滤波器 当干扰信号的频带低于有用信号的频带比较远时,可采用高通滤波器来滤除干扰信号。
RC低通滤波器的信噪比σG为
σG=[S2/(1+S2)]1/2 (22)
式中:S=2лfRC;
f为信号的频率(Hz);
R为滤波器的电阻(Ω);
C为滤波器的电容(F);
——LC滤波器 当干扰信号的频带虽高于、但接近于有用信号的频带时,可采用LC滤波器滤除干扰信号。
LC滤波器的信噪比σY为(当L=CRL2时)
σY=[(1-ω2LC)2]1/2 (23)
式中:ω=2лf;
f为信号的频率(Hz);
RL为负载的电阻(Ω);
C为滤波器的电容(F);
L为滤波器的电感(H)。
——选通滤波器 当干扰信号的频带不连续时,可应用LC选通滤波器或RC选通滤波器。其中LC选通滤波器分并联谐振式和串联谐振式两种型式。
[5.3.2] 数字电路
数字电路的电磁兼容设计方法是
[1]. 在工作指标许可的情况下,采用直流噪声容限高的数字电路。例如CMOS数字电路的直流噪声容限远高于TTL数字电路的直流噪声容限。
[2]. 在工作指标许可的情况下,采用开关速度低的数字电路。因为开关速度越高,由它引起的电压或电流的变化越快,就越容易产生电路间的耦合干扰。
[3]. 提高门槛电压,可以利用在电路前设置分压器或稳压管的方法来提高门槛电压。
[4]. 悬空长线具有天线效应,易接收电磁波而产生干扰,为此可用RC网络加以吸收,或作不悬空处理。
[5]. 采用负载阻抗匹配的措施,即使负载阻抗等于信号线的波阻抗,这样一来将会消除数字信号在传输过程中由于折射和反射的作用而产生的畸变。比如在测量一个方波时,如果阻抗不匹配,示波器显示的将不是一个方波,而是一种多次振荡的波形,其原因除了波形失真外,还由于方波信号的多次折射和反射。